Incoming 6th Grade Math Summer Packet

Dear CA students and parents,

In preparation for the upcoming school year, students are provided with a summer review packet. This packet focuses on some of the prerequisite concepts and skills necessary for student success in 6th grade mathematics. The sixth grade math teacher will use this packet as your first quiz grade. Please make sure you complete the packet so you start off the new school year with a good grade.

While completing the review packet, it is recommend that students:

- Complete each problem, and show all steps used to arrive at the final answer.
- Show all work neatly on the actual packet, if it is printed. (Additional lined paper may be added if necessary.)
- If packet is not printed, then make sure to number each page and problem as it appears on the packet. All work must be neatly presented.
- Box your final answers.
- Round to nearest place value when directed to do so.
- Label answers when necessary.
- Do not use a calculator.
- Do not rush! Use time wisely.

Summer Packet – 5 th int	to 6 th grade Nan	ne	
Addition			1 1
Find the sum of the two Show all work.	o numbers in each problem.	Example:	4 4 8
		Cxumple.	+ 188
			636
1. 652	2. 203	3. 726	
<u>+ 345</u>	<u>+ 525</u>	<u>+ 268</u>	

1

Decimal Addition:

Remember to line up the decimals before adding. Bring the decimal straight down in your answer.

4. 7.75	5. 51.4 + 2.86	6.	.1274 + 8.25
<u>+ 1.46</u>			

					3	13
Subtraction				7	¥	3
Find the difference b each problem. Show o	etween the two numbers in all work.	Example:		 2	1	8
				5	2	5
7.	8.		9.			
407	7,007			3,	414	
<u>- 198</u>	2,426			<u>-1,</u>	218	

Decimal Subtraction:

Remember to line up the decimals before subtracting. Bring the decimal straight down in your answer.

10.	11.	12	2.
338.38	80.40)1 - 44.23	75.89 - 9.4
<u>- 149.27</u>			

Multiplication Find the product of problem. Show all w	the two numbers in each ork.	Example:	54 <u>×16</u> 324 <u>+540</u> 864
13. 65 <u>× 4</u>	14. 42 <u>× 8</u>	15.	84 <u>× 39</u>

Decimal Multiplication:

Multiply as you would with whole numbers. Count the decimal places in each factor. The product (answer) has the same number of decimal places.

16.	17.	18.
.13	5.1	.108
<u>× 70</u>	<u>x 2</u>	<u>× 2.5</u>

	nt in each problem. If there i R= Show all work. Feel fr	is a remainder, state the ee to use a separate sheet of
19.	20.	21.

 19.
 20.
 21.

 $7)\overline{591}$ $12\overline{)264}$ $43\overline{)2815}$

Decimal Division:

If the divisor (outside number) is a decimal, you must move the decimal point (using multiplication)to the right until it becomes a whole number. Then, move the decimal in the dividend (insidenumber) the same number of times. Divide to find your answer (quotient).Then, move the decimal straight up from the dividend to the quotient.Remember, no remainders.22.23.24.

3)31.8	.5)7.45	.12)12.24

Rounding Underline the given place value 5 or greater, increase the under the right is less than 5, keep th		
The Fight is less than 5, keep in	te undernined digit the same.	hundredth
		0.547 0.55
Round to the nearest		
25. tenth 0.3479	26. hundredth 0.7553	27. whole number 3.268
28. ten 162.21	29. thousandth 0.0036	30. hundred 990.54
Compare the decimals.	Con 1.2	mpare using <, >, or = 2 1.20 1.2 = 1.20
31. 0.205 🔿 0.21	32. 1.03 🔘 0.03	33. 0.04 🔿 0.050
34. 0.1 (0.1000	35. 0.52 🔵 0.500	36. 0.41 () 0.405

Prime Number: A whole number greater than 1 that has only two factors, 1 and itself. Examples: 2, 3, 5, 7, 11, 13, 17, and 19 are all prime numbers.

Composite Number: A whole number greater than 1 that has more than two factors. Example: 8 is a composite number since its factors are 1, 2, 4, 8.

Determine if the following numbers are prime or composite. If the numbers are composite, please list all of the factors.

37.	27:
38.	39:
39.	43:
40.	49:

Exponents

A way to show repeated multiplication by the same factor is to use an exponent. In this example: $2^3 = 2 \times 2 \times 2 = 8$. The small raised three is the exponent. It tells how many times the number 2, called the base, is multiplied by itself.

Solve the following expressions by writing the expanded notation (repeated multiplication) and find the value.

41. 6² 42. 2⁶ 43. 3⁴ 44. eight squared 45. five cubed

Greatest Common Factor

The greatest factor that two or more numbers have in common (GCF).

- 1. List all the factors of **four** in order
- 2. List all the factors of **twenty** in order
- 3. List the common factors
- 4. Write the greatest common factor

Finding Common Factors:		
4: 1 , 2 , 4		
20: 1, 2, 4, 5, 10, 20		
Common Factors: 1, 2, 4 GCF= 4		

List all the factors for each number. Circle the common factors.

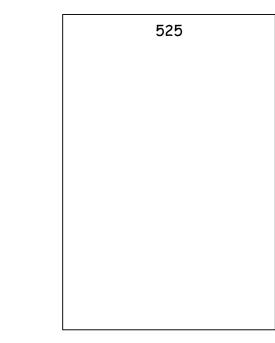
46.	18 :	
	30 :	
	Common Factors:	Greatest Common Factor:
47.	60 :	
	45 :	
	Common Factors:	Greatest Common Factor:
48.	23:	
	29:	
	Common Factors:	Greatest Common Factor:
49.	56:	
	72:	
	Common Factors:	Greatest Common Factor:

Least Common Multiple

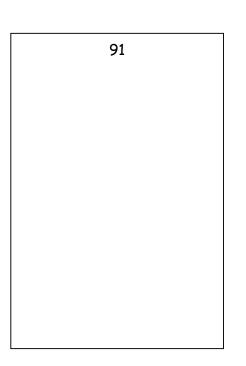
The smallest nonzero multiple that two or more numbers have in common.

- 1. List the first 6 multiples of 4
- 2. List the first 6 multiples of 6
- 3. List the common multiples
- 4. Write the least common multiple.

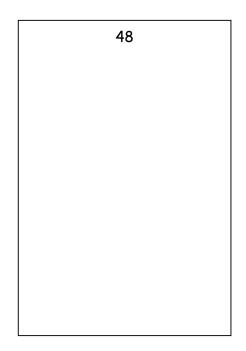
Finding Common Multiples: 4: 4, 8, 12, 16, 20, 24 6: 6, 12, 18, 24, 30, 36 Least Common Multiple= 12

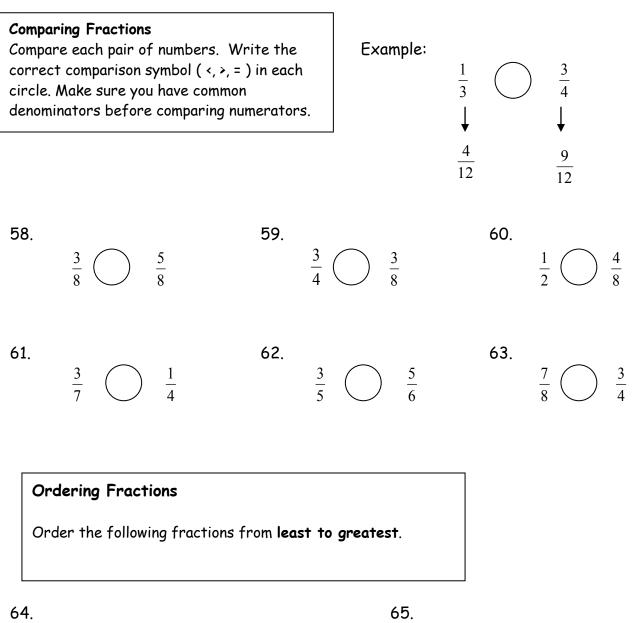

50.	8 :	
	12 :	
	Common Multiples:	_Least Common Multiple:
51.	7 :	
	11 :	
	Common Multiples:	_Least Common Multiple:
52.	25 :	
	10 :	
	Common Multiples:	_Least Common Multiple:
53.	24 :	
	36:	
	Common Multiples:	_Least Common Multiple:

Prime Factorization is a composite number renamed as a product of prime numbers. You may make a factor tree to find the answer. Put final answer in exponent form.


180

Find the prime factorization of 36. 36								
/	١							
6 x	6							
1 \	/ \							
2 x 3	2 x 3	$2^2 \times 3^2$						


55.


56.

57.

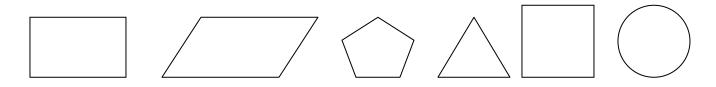
54.

64.							65.					
$\frac{3}{8}$	$\frac{5}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	$\frac{7}{8}$				$\frac{1}{5}$	$\frac{4}{5}$	$\frac{1}{10}$	$\frac{6}{10}$	$\frac{7}{10}$
66.							67.					
$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{5}$				$\frac{1}{2}$	$\frac{5}{16}$	$\frac{30}{64}$	$\frac{3}{8}$	$\frac{9}{32}$

Order of Operations Solve the following problems. Show your work. Be sure to follow the order of operations. <u>Parenthesis</u> <u>Exponents</u> <u>Multiplication or Division: Which ever comes first from left to right.</u> <u>A</u>ddition or <u>S</u>ubtraction: Which ever comes first from left to right.

> Example: 8 - 4 ÷ 2 + 2 = 8 - 2 + 2 = 6 + 2 = 8

68. 15 x 8 - 3 =


69. 36 ÷ 4 x 3 =

70. (30 + 8) x 6 -1 =

71. $(30+8) \times (6-1) =$ 72. $(29-18) + 14 \div 2 + 6 =$ 73. $64 \div 8 \times 2$

74. 36 - 5(16 - 11) = 75. $25 + 18 \div 6 - 1 =$ 76. $24 + 6^2 - 1^4 =$

Geometry-Who am I? Use the following shapes to answer the questions below.

77. I am a 2 dimensional shape that has four sides. I have four 90 degree angles. I have two sets of parallel lines. I also have two sides that are one length, and my other two sides are a different length.

Who am I?_____

78. I am a 2 dimensional shape that has three acute angles. All of my sides are the same length. I have no parallel sides.

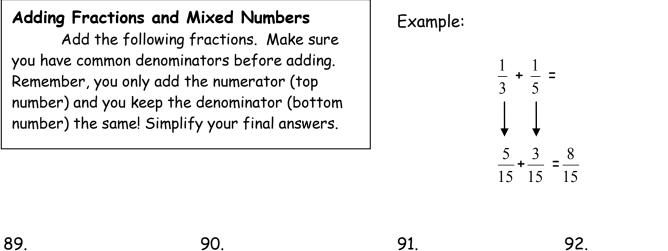
Who am I? _____

79. I am a 2 dimensional shape that has four sides. I have two obtuse angles and two acute angles. I have two different sets of parallel sides. I also have two sides that are one length, and my other two sides are a different length.

Who am I? _____

80. I am a 2 dimensional shape that has 5 obtuse angles. I do not have any sides that are parallel.

Who am I? _____

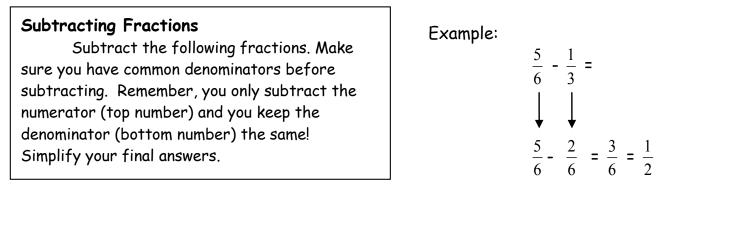

81. I am a 2 dimensional shape that has four 90 degree angles. I have four sides that are all the same length. I have two different sets of parallel lines.

Who am I? _____

82. I am a 2 dimensional shape. My perimeter is also known as a circumference.

Who am I? _____

Simplif	Fractions y the following fra roper, change then mplify.	Example:	<u>10</u> ÷5= <u>2</u> 25÷5= 5	
83.		84.		85.
	$\frac{14}{28}$	$\frac{1}{5}$	<u>5</u> 5	$\frac{12}{51}$
86.		87.		88.
	$\frac{34}{48}$	$\frac{1}{4}$	_	$\frac{80}{25}$


89.

 $\frac{6}{10} + \frac{3}{10} =$

90.

$$2\frac{3}{8} + 1\frac{2}{8} =$$

92. $\frac{1}{9} + \frac{5}{6} =$ $\frac{1}{12}$ + 1 $\frac{2}{3}$ =

93. 94. 95. 96. $\frac{5}{6} - \frac{3}{6} = 2\frac{8}{12} - 1\frac{3}{12} = \frac{7}{10} - \frac{2}{4} = 3\frac{4}{5} - \frac{1}{4} = 3\frac{4}{5} - \frac{1}{5} = 3\frac{1}{5} - \frac{1}{5} - \frac{1}{5}$

Multiplying Fractions

Multiply the following fractions. Multiply the numerators; then multiply the denominators. Simplify, if necessary.

Example:

$$\frac{3}{5} \times \frac{5}{9} = \frac{15}{45} = \frac{1}{3}$$

97.	98.	99.	100.
$\frac{3}{4} \times \frac{1}{3} =$	$\frac{2}{3} \times \frac{5}{8} =$	$\frac{1}{3} \times \frac{2}{5} =$	$\frac{7}{8}$ × 2 =